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Phospholipid-bilayer Vesicle Shapes and Shape 
Transformations: Theory vs. Experiment

Michael Wortis

Abstract
Laboratory preparations of micron-scale fluid-phase phospholipid vesicles exhibit a rich fauna of 
vesicle shapes and a complex systematics of shape transformations induced by changing accessible 
control parameters. At the same time, there is a well-developed theory of vesicle shapes based on 
the concept of minimizing the elastic bending energy. This contribution describes progress that has 
recently been made in comparing theory and experiment in a quantitative manner.
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Theory of Vesicle Shapes

Canham (Canham, 1970) and Helfrich (Helfrich, 
1973) in the early 1970’s were the first to propose 
that the shapes of fluid-phase phospholipid vesi­
cles in aqueous solution are determined by simple 
minimization of an elastic bending energy. Deul- 
ing and Helfrich (1976) then produced a catalogue 
of minimum-energy shapes in good correspondence 
with the simple shape classes observed in the lab­
oratory for both red blood cells (rbc’s) and ar­
tificially prepared pure-lipid vesicles. Returning 
to this problem in the early 1990’s with the aid 
of better computational facilities, we (Miao et al., 
1991) and other groups (Seifert et al., 1991) began 
to map out the phase diagram of Helfrich’s (Hel­
frich, 1973) model, showing the energy-minimizing 

shapes as a function of the control parameters. 
Two things became clear. First, we found that, 
for appropriate parameters, budded or vesiculated 
shapes, with one or more small (infinitesimal) 
necks, were minimizing shapes (Miao et al., 1991; 
Fourcade et al., 1994). Second, in comparing 
the calculated phase diagram with experiments in 
which shape transitions were induced by smoothly 
varying the control parameters (e.g., by varying 
the temperature), it became clear that the origi­
nal Helfrich model was systematically inconsistent 
with experiment.

Several groups (Seifert et al., 1991; Miao et al., 
1994; Svetina and Zeks, 1989) worked in the early 
1990’s to understand these discrepancies based 
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on ideas originally put forward earlier by Evans 
(1974; 1980), Helfrich (1974), and others. The 
physics behind these studies was the observation 
that the rate of flip-flop—the exchange of phos­
pholipid molecules between the two leaves of the 
bilayer— is slow on mechanical time scales. Thus, 
the number of molecules on the inside and out­
side leaves of the bilayer—and, therefore, the re­
laxed area difference AAq between the two bilayer 
leaves—are conserved quantities. The upshot of 
this work (Miao et al., 1994) was the so-called 
area-difference elasticity (ADE) model, defined by 
the Hamiltonian,

Hade[S]
1
2Kb

+ ^(AA[5]-AA0)2

(1)

In this expression, the first term is the original 
Helfrich bending energy (Helfrich, 1973), where 
Ci(r) and C2(r) are the two local principal cur­
vatures at the point r on the vesicle surface and 
Co is the so-called spontaneous curvature, which 
reflects any intrinsic asymmetry between the in­
ner and outer bilayer leaves. The second term is 
the area-difference contribution, which measures 
the elastic energy cost of forcing the actual area 
difference AA (between inner and outer leaves) to 
differ from the relaxed area difference AA0. The 
actual area difference AA depends on the shape 
[5] of the vesicle via the relation,

AA[S] = D J> dA(Cl(r) + C2(r')), (2)

where D is the interleaf separation (assumed 
fixed), A is the vesicle area, a is a dimensionless 
material constant (generically of order unity), and 
Kb is the Helfrich bending rigidity. The fact that Kb 
is 10—20 times the thermal energy kßT for typical 
phospholipids near room temperature means that 
the shape problem is a low-temperature, purely 
mechanical problem to first approximation. The 
stable mechanical shapes are predicted to be the 
local minima of Eq. (1) subject to constraints of 
fixed volume V and area A. Because of the par­
ticular form of Eq. (2), it turns out that these 

shapes are precisely those of the Deuling-Helfrich 
catalogue (Deuling and Helfrich, 1976), only with 
a self-consistently determined effective value of the 
spontaneous curvature Co-

Equation (1) is at present qualitatively consis­
tent with experimental observations (in a way that 
the Helfrich Hamiltonian (Helfrich, 1973) was not); 
however, until recently, it had never been directly 
tested. This may seem surprising; but, the rea­
sons are rather simple. A direct test would be 
to measure the control parameters of a particular 
experimental vesicle, A, V, Co, and A Ao (k{>, ct, 
and D may be assumed known), and then to com­
pare the observed and predicted shapes. There 
are two difficulties with this scenario. First, the 
control parameters cannot be simply measured: A 
and V must somehow be inferred from 2D phase­
contrast microscope images, while Co and A Ao, 
not being geometrical, cannot be inferred from the 
microscope images. Second, thermal shape fluc­
tuations are not really small (indeed, near shape 
instabilities they can be quite large!), so what 
one measures in the laboratory for a given vesi­
cle is a time-sequence of shapes, constituting a 
thermal shape ensemble. One must find some 
way to infer from this shape ensemble the cor­
responding zero-temperature, mechanical shape, 
which is the object most directly predicted by the 
theory. We have developed (Döbereiner et al., 
1997) a procedure, combining theory with obser­
vation of micron-scale vesicles by phase-contrast 
microscopy, which allows these difficulties to be 
circumvented and provides what we believe to be 
the first direct quantitative confrontation of theory 
with experiment. It is not, so far, a very extensive 
test, nor is it at all precise. On the other hand, it 
remains, in our view, the only one available. The­
ory appears to pass the test (Döbereiner et al., 
1997).

As a consequence, we have at this point what 
appears to be a viable theory of single-component 
fluid-bilayer vesicle shapes and, thereby, an un­
derstanding of the influence on these shapes of a 
(small) set of control parameters—at the level of a 
fairly extensive but still incomplete shape/phase 
diagram. By systematically manipulating these 
control parameters, we know how to move vesi- 
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des across instability boundaries (spinodals, in the 
language of phase transitions) so as to produce 
systematically in the laboratory shape transitions 
like budding and vésiculation, the discocyte-to- 
stomatocyte transition, etc.

What does this have to do with biological mem­

branes? To first approximation, the honest answer 
may be “not much”; but, let me make a few re­
marks, anyway. The main issue here is that bi­
ological membranes, even those as simple as the 
rbc membrane, are much more complicated than 
one-component lipid bilayers.

Effect of the Cytoskeleton on the Red Blood Cell Shape

The rbc cytoskeleton is a tethered network of 
protein polymers anchored to the interior side of 
the plasma membrane (but not, as in many cells, 
extending into the cytosol). Unlike the (fluid) 
plasma membrane, the cytoskeleton has a well de­
fined shape and its shape mechanics cannot be 
described by an energy functional of the form of 
Eq. (1) but must include local dilation and shear 
elasticities (in addition to bending). In situations 
where these contributions are important (as they 
certainly are at high deformation), an approach 
to rbc shapes based on Eq. (1) alone (and on 
the control parameters we have identified above) 
is bound to fail. However, there is some evidence 
that the cytoskeletal contribution to the energy 

is rather small for weak deformations of the nor­
mal discocyte, so that the discocyte and shapes 
not too far from it (including those accessed by 
thermal flickering) can probably be effectively de­
scribed by Eq. (1). In this spirit, it may be ar­
gued that echinocyte shapes (which do not show 
up in the Deuling-Helfrich catalogue (Deuling and 
Helfrich, 1976) occur when the plasma membrane 
by itself would like to form multiple outward buds 
(i.e., when it has extra material in the outer leaf 
of the bilayer). Such buds require large shear de­
formations near the narrow necks and are thus 
suppressed by the cytoskeleton, resulting in the 
smooth crenellations characteristic of echinocytes. 
This hypothesis remains untested, as far as I know.

Effect of Lipid Mixtures

Typical biological membranes contain a mixture of 
many different lipids plus important proteins, etc. 
As long as this mixture remains spatially homoge­
neous, it can be characterized at long wavelength 
by appropriate (average) values of the parameters, 
Kb, o, Co, and D. On the other hand, as soon as 
inhomogeneities occur, in the form of either spatial 
fluctuations or full phase separation, then modifi­
cation of Eq. (1) is required. (And, indeed, an 
additional term involving the Gaussian curvature 
cannot be ignored, as we have done above.) These 
modifications are not hard to incorporate and a 
few calculations have been carried out (Lipowsky, 

1995). The issue is interesting when the composi­
tional degrees of freedom are coupled to the geo­
metric ones (e.g., different components having dif­
ferent Kb’s and/or different Go’s) and it is further 
complicated by the fact that compositional fluc­
tuations at the same point on the bilayer but in 
different leaves may be coupled. When full phase 
separation takes place, the phase boundary acts 
as a line under tension, which under appropriate 
conditions can promote bud formation (just as an 
elastic band might pull closed the open neck of 
a bag)—a process called domain-induced budding 
(Lipowsky, 1992; Jülicher and Lipowsky, 1996).
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Another possible consequence is the aggregation of 
species favoring large Gaussian curvature in a neck 
region, thus lowering the energy of neck formation. 
Such effects may also be associated with the exper­

imental observation that buds, once formed, tend 
to fission spontaneously in some systems but not 
in others (Döbereiner et al., 1993).

Budding Mechanisms

It is well established that the mechanisms de­
scribed above, based on Eq. (1) and its associated 
control parameters, can and do produce budding 
(and other shape instabilities) in artificial vesi­
cles and in rbc’s. It is also known that many in­
stances of cellular and intracellular budding are 
driven by specific, energy-consuming processes in­
volving proteins such as clathrins. I cannot point 
to any cases where it has been established that 
a particular biological budding processes proceeds 
via (biochemical) manipulation of the control pa­
rameters of Eq. (1); however, there are many bud­
ding processes the mechanisms of which remain 
to be understood. What is clear in any case is 

that, to initiate budding, nature must control the 
energy landscape set by Eq. (1) or its general­
ization in the case of lipid mixtures and/or cy- 
toskeletal involvement. In this connection, it is 
interesting to note that estimates of the closure 
energy of clathrin cages come in just about an or­
der of magnitude larger than the energy scale Kb 
of typical membrane lipids. This is probably not 
an accident. One may speculate as to whether at 
early stages in cellular evolution, before the devel­
opment of clathrin and clathrin-like mechanisms, 
nature made more general use of the “physical” 
control parameters whose action we have studied.

Summary

In summary, the significance of understanding the 
shape mechanics of one-component lipid bilayer 
membranes probably does not lie principally in 
any direct or immediate application to cellular pro­
cesses. Such applications will usually have to in­
corporate elaborations of the simple theory dis­
cussed here to account for the richer biochemical 
environment of the working cell. What our work 
(and that of our many collaborators and competi­
tors) has shown is that we are at least on our way 
to understanding at a quantitative, predictive level 
the mechanical properties of one of the simplest 
biological materials, the fluid-phase phospholipid 

bilayer. Such bilayers (in the many cellular con­
texts where they occur) form a substrate for much 
important cellular machinery. And, it is increas­
ingly being appreciated that this material is far 
from passive but modulates in crucial ways the 
structure and behavior of the proteins and other 
biomolecules that use it as a substrate.
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